Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

نویسندگان

  • Haijiang Geng
  • Tao Lu
  • Xiao Lin
  • Yu Liu
  • Fangrong Yan
چکیده

Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extended Local Hierarchical Classifier for Prediction of Protein and Gene Functions

Gene function prediction and protein function prediction are complex classification problems where the functional classes are structured according to a predefined hierarchy. To solve these problems, we propose an extended local hierarchical Naive Bayes classifier, where a binary classifier is built for each class in the hierarchy. The extension to conventional local approaches is that each clas...

متن کامل

Predicting Metal-Binding Sites of Protein Residues

Metal ions in protein are critical to the function, structure and stability of protein. For this reason accurate prediction of metal binding sites in protein is very important. Here, we present our study which is performed for predicting metal binding sites for histidines (HIS) and cysteines from protein sequence. Three different methods are applied for this task: Support Vector Machine (SVM), ...

متن کامل

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Prediction of protein-RNA binding sites by a random forest method with combined features

MOTIVATION Protein-RNA interactions play a key role in a number of biological processes, such as protein synthesis, mRNA processing, mRNA assembly, ribosome function and eukaryotic spliceosomes. As a result, a reliable identification of RNA binding site of a protein is important for functional annotation and site-directed mutagenesis. Accumulated data of experimental protein-RNA interactions re...

متن کامل

Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites

MOTIVATION The limited availability of protein structures often restricts the functional annotation of proteins and the identification of their protein-protein interaction sites. Computational methods to identify interaction sites from protein sequences alone are, therefore, required for unraveling the functions of many proteins. This article describes a new method (PSIVER) to predict interacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015